

Factor 0.9285:2012; 1.2210:2013 **Index Copernicus** ICV 2011: 5.09 ICV 2012: 6.42 ICV 2013: 15.8 ICV 2014:89.16 **NAAS Rating** 2012 : 1.3; 2013-2014-2015:2.69 SJIF 2012: 3.947, 2013: 4.802 **INFOBASE INDEX 2015:4.56 COSMOS IMPACT**

FACTOR

2015: 4.366

Received on: 19th September 2016 **Revised on:** 25th September 2016 Accepted on: **13th October 2016 Published on:** 1st November 2016 Volume No. **Online & Print** 81 (2016) Page No. 52 to 57

Life Sciences Leaflets an international open access print & journal, peer reviewed, worldwide abstract listed, published every month with ISSN, RNI Greemembership, downloads and access.

ALLELOCHEMICALS OF ARUNDO DONAX ENHANCED THE GROWTH OF WHEAT SEEDLINGS

RAJENDRA KUMAR LECTURER IN BOTANY, DR. BHIM RAO AMBEDKAR GOVT. COLLEGE SRI GANGANAGAR, RAJASTHAN,

INDIA-335001.

Corresponding author's e-mail: raj.2009karwasra@gmail.com

ABSTRACT:

The aquatic macrophytes are well known to exhibit allelopathy. Arundo donax L., the Giant reed (Poaceae) was screened for their allelopathic potential to the growth of wheat seedlings. The 3% aqueous leachate was tested for seed germination of wheat (Triticum aestivum L. variety Raj. 1482) in petriplates as well as pot culture. The A.donax was found to enhance the growth of wheat seedlings. The wheat seedlings were planted in pots with soil mixed with 3% (w/w) dried matter (Ag and Bg parts) of A.donax. The growth of wheat seedlings was highly promoted. This study suggested the future prospects of the integrated management of wheat crop using the potential of allelopathic species A.donax.

KEY WORD: Allelopathic potential, Leachate, Integrated management.

INTRODUCTION:

Allelochemicals produced by the plants endogenously are chemicals, which after being released into the environment, subsequently alter and modify the growth and development of neighbouring plants. These are biomolecules released from various plant parts by means of volatilization, leaching, decomposition of residue and root exudation.

The A.donax is emergent weed growing in the downstream areas of the reservoirs. The dominating nature (of emergent macrophytes is normally associated with the accumulation of allelochemicals in the marshy places particularly in monospecific stands over a long period (Gopal and Sharma,

1990; Saxena et al., 2007. The A.donax is known to release phenolic compounds and exhibit allelopathic interactions. Thus, the use of phytochemicals of A.donax in the form of dried plant material in the field of wheat can replace the hazardous chemical fertilizer for better ecofriendly grain yield.

MATERIAL AND METHODS:

Collection of Plant Material

Above ground (Ag) and below ground (Bg) plant portions of A.donax was collected from the Botanical Garden, Dr. Bhim Rao Ambedkar Govt. College Sri Ganganagar. The above ground and below ground plant samples were cleaned with soft brush. These samples were washed gently with tap water and distilled water thereafter and dried on absorbent paper.

I In Vitro Seed Germination and Seedling Growth Lab Bioassay

The in vitro seed germination and seedling growth bioassay experiments were performed in petriplates to explore the phytotoxicity of aqueous leachates of A.donax at 3% concentration on the growth of test crop wheat under laboratory conditions. The leachate of three percent concentration (dry weight/volume) of A.donax was prepared by soaking 3g plant material in 100 ml of distilled water, each for 24h and then filtered. The seeds of crops were surface sterilized with 0.1 % HgCl2 solution for one minute and washed thereafter 4-7 times with sterilized distilled water and dried with filter paper. The pre-sterilized petriplates (9 cm) were lined with two filter papers. Ten healthy seeds of wheat (Triticum aestivum L. variety Raj. 1482) were placed at equidistance on top of the filter paper in petriplates. Each treatment was replicated 3-5 times for each test species. As per treatment, each petriplate received 5 ml of leachate on first day and 3 ml leachate on 2, 4 and 6 days after sowing (DAS). The petriplates were kept in BOD incubator at 12-20°C. The seedlings were harvested 7 days after sowing and germination of seeds, lengths of shoot and root of seedlings were measured. Subsequently, these were kept in an oven for drying at 80oC for 24 h and weighed thereafter for total dry weight.

II Pot Culture Experiment

The pot culture experiment was conduct to meet the objectives of in vitro seed germination and seedling growth lab bioassay. The experiment was set up in earthen pots (14 x 9cm) with aim to investigate the allelopathic impact of A.donax on the growth of wheat. The pots were filled with about 4.5 kg garden soil. Three treatments with control set were made for experiment. In first treatment (impact of dry matter), around 5cm layer of the top soil of each pot was removed (approximately 2 kg) and mixed with dry matter (60 g) of A.donax in ratio of 3 % (w/w) and refilled in earthen pots. In second treatment (impact of aqueous leachate), the 3% leachate of A.donax was used. In third treatment, the soil was treated with chemical fertilizer. The chemical fertilizer was applied in combination with NPK as 20kg N, 22 kg P and 42 kg K per hectare. The N was applied in the form of Urea (45 % N) at the rate of 540 mg/9 kg soil, P in form of single super phosphate (16 % P) at the rate of 99 mg / 9 kg soil and K in form of muriate potash (60 % K2O) at the rate of 198 mg/ 9 kg soil. Five replicates were taken for each set of treatment and control set. Ten seeds of wheat (test crop) were sown in each pot. Three harvests were made at the interval of 40, 80 and 120 days after sowing (DAS). The parameters such as length of root, shoot, dry weight and leaf area were measured.

RESULTS AND DISCUSSION:

In Vitro Seed Germination and Seedling Growth Lab Bioassay

The data presented in Table 1 shows the impact of aqueous leachate of 3% (w/v) concentration of above ground (Ag) and below ground (Bg) plant parts of A.donax on germination and growth of wheat seedlings. The aqueous leachate of both Ag and Bg parts of A.donax effectively increased the germination and growth of wheat seedlings. The promotion was more pronounced in Bg part than Ag part. The % germination was 104% of control in both Ag and Bg parts. The root length remained only 75% of control in Ag part on the other hand it sharply increased to 150 % of control in Bg part. In case of shoot, the length was 122 and 145% of control in Ag and Bg parts respectively. Likewise, total dry weight also showed an increase and observed 127% of control in Ag and 162% of control in Bg part at 7 DAS.

Pot Culture Experiment

Root length

The data in Table 2 shows the successive stages of growth in root length of wheat. The treated sets (aqueous leachate and soil incorporated with dry matter of A.donax) showed an enhancement in root length. The best promoting results were observed in sets incorporated with (3% w/w) dry matter of A.donax in soil at 40, 80 and 120 DAS. In chemical treatment, it was only 117% of control in first harvest whereas it was 140 and 137 % of control in dry matter and aqueous leachate of A.donax respectively. The root length was 120 % of control in chemical treatment whereas it increased upto 150 and 138% of control in dry matter and aqueous leachate of A.donax respectively. At 120 DAS, the root length of wheat seedlings was in the following order as dry matter > aqueous leachate > chemical treatment (Fig.2). The ANOVA was found significant in all parameter. The Dunnett's test proved that aqueous leachate and dry matter of A.donax were highly significant for root length of wheat plants at 40, 80 and 120 DAS.

Shoot length

The data presented in Table 3 shows the impact of A.donax (dry matter and aqueous leachate) and chemical fertilizer on shoot length of wheat plants. All the three treatments significantly increased the shoot length. The soil incorporated with dry matter registered highest length followed by aqueous leachate and chemical fertilizer. At 40 DAS, it was 131, 123 and 109% of control in dry matter, aqueous leachate and chemical fertilizer respectively. The length gradually increased at each harvest in all the treatments in comparison to control. It was 127, 123 and 111% of control at 80 DAS and 124, 119 and 107 of control at 120 days respectively (Fig.3). The ANOVA was found significant in all the harvest. Further Dunnett's test proved that aqueous leachate; dry matter of A.donax and chemical fertilizer significantly increased the shoot length at different stages of plant growth.

Total dry weight

The data summarized in Table 4 shows the total dry weight of wheat plants at three different harvests. The soil incorporated with dry matter of A.donax enhanced the total dry weight in all the three harvests. All the three treatments viz. chemical fertilizer, dry matter and aqueous leachate of A.donax significantly enhanced (126, 169 and 158% of control, respectively) the total dry weight at first harvest in comparison to control. At 80 DAS the total dry weight was found highest in soil incorporated with dry matter and lowest in chemical fertilizer treatment. At final harvest (120 DAS) the dry weight was recorded as 128, 119 and 109% of control in dry matter, aqueous leachate of A.donax and chemical fertilizer respectively.

DISCUSSION:

A.donax was screened for investigation of their allelopathic potential wheat seed germination and seedling growth bioassay in laboratory as well as pot experiment. In the present study, A.donax has shown significant positive impact on the growth of wheat in pot culture experiments. The sets with dry matter (3% w/w) and aqueous leachate (3% w/v) of A.donax significantly enhanced the growth of wheat seedling up to 147 and 125% of control, respectively. The shoot length measured up to 124 and 119% of control in sets treated with dry matter and aqueous leachate of A.donax, respectively. The total dry weight was also found 128 and 118% of control respectively. Hence, the present study confirmed that the A.donax plant has favorable impact on wheat

REFERENCES:

Gopal, B. and K.P. Sharma. 1990. Ecology and management of aquatic vegetation in the Indian subcontinent. In: Gopal, B.(ed.): Ecology of plant populations I: Kluwer Academic Publishers, Netherlands. 76-106.

- Saxena, M.K., J. Gupta and R.C. Meena. 2007. Allelopathic effects of *Phragmites karka* on free floating and submerged fresh water weeds. *Indian. J. Environ. and Ecoplan.* 14(1-2): 1-10.
- Sharma, K.P. and S.P.S. Khushwaha. 1990. Factors affecting growth and establishment of *Phragmites karka* Retz. Trin. ex Steud. from vegetative and generative propagules. *Int. J. Ecol. Environ. Sci.* 162-3: 161-168.
- Szczepanska, W. and A.J. Szczepanski. 1982. Interactions between *A.donax* (Cav.) Trin. ex Steud. and *Typha latifolia* L. *Ekol. Pol.* 30:165-186.
- Vyvyan, J.R. 2002. Allelochemicals as leads for new herbicides and agrochemicals. *Tetradron* 58:1631-1646.
- Wheat, E.L., 1984. Allelopathy. 2nd Edition Academic Press, New York, 421.

Table 1: Allelopathic impact of 3 % (w/v) aqueous leachate of above ground (Ag) and below ground (Bg) plant parts of A.donax on test crop wheat

Growth	Control	A.don	LSD	
parameters		Ag	Bg	
Germination (%)	90.33 ± 3.33	93.3 ± 3.33	93.33 ± 3.33	12.30
GIR	_	-3.70	-3.70	-
Root length (cm)	1.81 ± 0.12	1.35 ± 0.02*	2.71± 0.12*	0.21
Shoot length (cm)	1.56 ± 0.17	1.90 ± 0.03*	2.26 ± 0.17*	0.28
Total dry weight (g)	0.026 ± 0.00	0.033 ± 0.00*	0.042 ± 3.33*	0.00

Mean \pm SE, GIR -Germination inhibition rate, LSD -Least significant differences, * Significant at 0.05 % level by Dunnett's test applied after ANOVA, Ag=Above ground, Bg=Below ground

Table 2: Allelopathic impact of chemical fertilizer, 3% (w/w) dry matter and 3% aqueous leachates of A.donax on root length (cm) of test crop wheat

Harvest	Day after sowing (DAS)	Control	Chemical fertilizer	A.donax (dry matter)	P. karka (Aqueous leachate)	LSD
I	40	4.44 ± 0.73	5.18 ± 0.74*	6.19 ± 0.45*	6.06 ± 0.67*	0.06
II	80	9.20 ± 1.20	11.50± 0.80*	13.77 ± 0.65*	12.60 ± 0.61*	0.05
III	120	9.50 ± 0.57	11.85± 0.48*	3.91 ± 0.45*	12.78 ± 0.48*	0.14

Mean \pm SE, GIR -Germination inhibition rate, LSD -Least significant differences, * Significant at 0.05 % level by Dunnett's test applied after ANOVA

Table 3: Allelopathic impact of chemical fertilizer, 3% (w/w) dry matter and 3% aqueous leachate of A.donax on shoot length (cm) of test crop wheat

Harvest	Day after sowing (DAS)	Control	Chemical fertilizer	A.donax (dry matter)	P. karka (Aqueous leachate)	LSD
I	40	12.96 ± 0.62	14.20 ± 0.74*	17.01 ± 0.45*	$15.91 \pm 0.87*$	0.10
II	80	45.45 ± 1.20	50.41 ± 1.25*	57.85 + 2.75*	55.84 ± 1.45*	0.14
III	120	48.92 ± 0.57	52.35± 0.68*	60.51 ± 1.05*	58.19 ± 1.01*	0.30

Mean ± SE, GIR -Germination inhibition rate, LSD -Least significant differences, * Significant at 0.05 % level by Dunnett's test applied after ANOVA

Table 4: Allelopathic impact of chemical fertilizer, 3% (w/w) dry matter and 3% aqueous leachates of A.donax on dry weight (g) of test crop wheat

Harvest	Day after sowing (DAS)	Control	Chemical fertilizer	A.donax (dry matter)	P. karka (Aqueous leachate)	LSD
I	40	0.539±0.05	0.699±0.03*	0.933±0.02*	0.878±0.02*	0.00
II	80	0.962±0.00	1.060.00*	1.157±0.01*	1.115 ± 0.00 *	0.00
III	120	1.061±0.04	1.152±0.04*	$1.361 \pm 0.04*$	$1.261 \pm 0.04*$	0.02

Mean ± SE, GIR - Germination inhibition rate, LSD - Least significant differences, * Significant at 0.05 % level by Dunnett's test applied after ANOVA