ANTIOXIDANT ACTIVITY IN CALLUS CULTURES AND IN VITRO REGENERATED PLANTS OF ARTEMISIA NILAGIRICA (CLARKE) PAMP.- AN IMPORTANT MEDICINAL PLANT SPECIES

  • A. K. BALIARSINGH 1* , L. SAMANTA 2 AND S. S. MOHANTY 3 A. K. BALIARSINGH 1* , L. SAMANTA 2 AND S. S. MOHANTY 3 1 BIOCHEMISTRY AND MOLECULAR BIOLOGY LABORATORY, P. G. DEPARTMENT OF BOTANY, UTKAL UNIVERSITY, VANI VIHAR, BHUBANESWAR-751004, ODISHA, INDIA. 2 P. G. DEPARTMENT OF ZOOLOGY, RAVENSHAW UNIVERSITY, CUTTACK-753003, ODISHA, INDIA. 3 DEPARTMENT OF BOTANY, B. J. B. COLLEGE, BHUBANESWAR-751014, ODISHA, INDIA. Corresponding author’s e-mail: ajitonline75@gmail.com

Abstract

ABSTRACT:
Antioxidant  potential  of  in  vitro  callus  and  regenerated  plants  of  Artemisia
nilagirica  was  investigated  using  several  biochemical  assay  techniques  for
scavenging of 1,1-diphenyl -2-picryl hydrazyl (DPPH), nitric oxide, superoxide
and  hydroxyl  radicals  as  well  as  lipid  peroxidation.  The  internodal  explants
from  A.  nilagirica  were  cultured  on  Murashige  and  Skoog’s  (1962)  basal
medium (MS) supplemented with various concentrations and combinations of
plant  growth  regulators.  A  synergistic  coupling  of  0.5  mg/L  2,4-
dichlorophenoxyacetic  acid  (2,4-D)  with  1.0  mg/L  Kinetin  (Kin)  yielded
maximum  callogenic  response.  Shoot  organogenesis  in  callus  cultures  was
most favoured in MS containing 2.0 mg/L 6-benzylaminopurine (BAP) and 0.5
mg/L indole-3-acetic acid (IAA). In vitro regenerated plantlets, emerged from
culture medium, were acclimatized and the survival rate of ex vitro plants after
soil transplantation  was 80-83% with  no apparent  phenotypic variations. The
antioxidant  potential  of  natural  (in  vivo)  plants,  callus  tissues  and  in  vitro
regenerated plants before and after field transplantation (ex vitro) plants were compared. DPPH scavenging activity was the highest in aqueous extracts of 10 week-old ex vitro plants
than  other  sources.  Superoxide  anion  and  nitric  oxide  radical  scavenging  activity  was  the  highest  in
ethanolic  extracts  of  10 week-old  ex  vitro  plants  where  as  the  hydroxyl  radical  was  the  maximum  in  6
week-old in vivo plants. Lipid peroxidation was neither observed in calli nor in regenerated plants of A.
nilagirica.

References

REFERENCES:
Aileni, M. Kota, S. R. Kokkirala, V. R. Umate, P. and Abbagani, S. (2009) Efficient in vitro regeneration
and micropropagation of medicinal plant Momordica tuberose Roxb. J. Herbs, Spices Med.
Plants 15:141-146.
Barry, H. and Susanna, C. (1993) Lipid peroxidation: its mechanism. Measurement and significance.
Amer. J. Clin. Nutr. 57:715-775.
Bhattacharjee, S. (2000) Hand Book of Medicinal Plants, Jaipur: Pointer Publishers; p. 43.
Das, K. L. Samanta, L. Chainy, G. B. N. (2000) A modified spectrophotometric assay of superoxide
dismutase using nitrite formation by superoxide radicals. Indian J. Biochem. Biophys. 37 : 201–
204.
Denicola, A., Souza, J. M. and Radi, R. (1998) Diffusion of peroxynitrite across erythrocyte membranes.
Proc. Natl. Acad. Sci. USA 95: 3566-3571.
Elhag, H. M. El-Domiaty, M. M. El-Fearaly, F. S. Mossa, J. S. and El-Olemy, M. M. (1991) In vitro
propagation of Artemisia annua L.. J. King Saud Univ, (3) 251-254.
Ezenwaka, C. L. Mbagwee, F. N. and Unamba, C. I. N. (2009) Effect of combination of different levels of
auxins and cytokinines on in vitro propagation of Dioscorea rotundata L. (White Yam), New
York Sci. J. 2(5) ISSN:1554-0200.
Fridovich, I. (1974) Superoxide dismutases. Adv. Enzym. 41:35-97.
Fridovich I (1986) Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1-11.
Garrat, D. C. (1964) In: The Quantitative Analysis of Drugs; 3 rd Chapman and Hall, Japan. 3:456-458.
Geesin, J.G. Gordon, J.S. and Berg, R.A. (1990) Retinoids affect collagen synthesis through inhibition of
ascorbate-induced lipid peroxidation in cultured human dermal fibroblasts. Arch. Biochem.
Biophys. 278:352-356.
Govindarajan, R. Vijayakumar, M. Rawat, A.K. and Mehrotra, S. (2003) Free radical scavenging
potential of Picrorhiza kurrooa Royle ex Benth. Ind. J. Exp. Biol. 41:
875-879.
Haliwell, B. ( 1991) Reactive oxygen species in living systems. Source biochemistry and role in human
disease. Amer. J. Med. 91:14-22
Halliwell, B. Aeschbach, R. Loliger, J. and Aruoma, O.I. (1995) The characterization of antioxidants.
Food Chem. Toxicol. 33:601-617.
Halliwell, B, and Gutteridge, J.M.C.(1987) Free Radicals in Biology and Medicine. Calrendon Press,
Oxford.
Han, K.H. Lee, E.J and Sung M..K. (1999) Physical characteristics and antioxidative capacity of major
seaweeds. J. Food Sci. Nutr. 4:180-183.
He, W. T. Hou, S. W. and Wang, C. Y. (2006) Callus induction and High frequency plant regeneration
from hypocotyls and cotyledon explants of Arctium lappa L., In Vitro Cell. Dev. Biol.-Plant 42:
411-415.
Marla, S.S., Lee, J. and Groves, J.T. (1997) Peroxynitrite rapidly permeates phospholipid membranes.
Proc. Natl Acad, Sci USA 94:14243-14248.
Marxen, K. Vanselow, K.H. Lippemeier, S. Hintze, R. Ruser, A. and Hansen, U.P.(2005) A
photobiorector system for computer controlled cultivation of microalgae. J. Appl. Phycol.
17:535-549.
Matsukawa. R., Dubinsky, Z., Kishimoto, E. Masaki, K., Masuda, Y. Takeuchi, T., Chihara, M.,
Yamamoto, T., Niki, E. and Karube, I.( 1997) A comparison of screening methods for
antioxidant activity in seaweeds. J. Appl. Phycol. 9:29-35.
Miyake, T. ans Shibamoto. T. (1997) Antioxidative activities of natural compounds found in plants. J
Agricul. Food Chem 45: 1819-1822.
Moncada, S. Palmer, R.M.J. Higgs, E.A ( 1991) Nitric oxide: physiology, pathophysiology and
pharmacology, Pharma. Rev. 43: 109.142.
Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue
cultures. Physiol. Plant. 15: 473-497.
Nam-Cheol, K. Kim, J. G. Lim, J. H. and Hahn, T. R. (1992) Production of secondary metabolites by
tissue culture of Artemisia annua L. J. Kor. Agri. Chem. Soc. 35: 99-104.
Namiki, M. (1990) Lipids. In Food Chemistry 3rd ed O.R. Fennema (Ed). Food Chem. 3rd ed., New York
Marcel Dekker Inc. pp. 225-319.
Nin, S. Morosi, E. Schiff, S. and Bennici, A. (1996) Callus cultures of Artemisia absinthium L. Initiation,
growth optimization and organogenesis. Plant Cell Tiss. Org. Cult. 45:67-69.
Ohkawa, H. Ohishi, N. And Yagi, K (1979) Assay for lipid peroxide in animal tissue by thiobarbutaric
acid reaction. Anal. Biochem. 95:351-358.
Okuda, T., Kimur, Y. Yoshida. T. Hatano, T., Okuda, H and Archi, S. (1983) Studies on the activities of
tannins and related compounds form medicinal plants and drugs. I. inhibitory effect of lipid
peroxidation in mitochondrial and macrodomes of liver. Chem.. Pharm. Bull. 31: 1652-1631.
Pratt, D.E. (1992) Antioxidants and Cancer prevention. In; Phenolic compounds in Food and their effects
on Health II. ACS Symposium Series 507, Washington: ACS; p. 54.
Samanta, L and Chainy, G.B.N. (1997) Age-related difference of hexachlorocyclohexane effect on hepatic
oxidative stress parameters of chick. Ind. J. Exp. Biol.35:457-461.
Senevirathne, M. Kim, S.H., Siriwardhana, N., Lee, K.W., Ha, J.H. and Jeon, Y.J. (2006) Antioxidant
potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating reducing
power and lipid peroxidation inhibition. Food Sci. Tech. Int. 12:27-38.
Singh, R.P., Murthy, K.N.C and Jayaprakasha, G.K. (2002) Studies on the antionxidant activity of
pomegranate (Punica granatum) peel and seed exrats using in vitro models. J. Agric. Food
chem..50:81-86.
Warrier, P.K. Nambiar, V.P.K. and Raman, C.K. (1995) Indian Medicinal Plants: A Compendium of 500
species. Orient Longman Ltd., Chennai, India.
Wills, E. D. (1969) Lipid peroxide formation in microsomes. General considerations. Biochem. J.
113:315-324.
Xu, Z. Q. and Jia, Z. F. (1996) Callus formation from protoplasts of Artemisia sphaerocephala Krasch and
some factors influencing protoplast division. Plant Cell Tissue Org.Cult. 44:129-134.
Yadav, A.K. and Temjenmongla, A. (2006) Antihelmintic Activity of Gynura angulosa DC. Against
Trichinella spiralis infections in mice. Pharmacol. online, 2:299-306.
Yan, ., Chuda, Y. Suzuki, M. and Nagata, T. (1999) Fucoxanthin as the major antioxidant in Hijikia a
common edible seaweed. Biosci. Biotechnol. Biochem. 63:605-607.
Yan, X., Nagata. T. and Fan., X (1998) Ant oxidative in some common seaweeds. Plant Foods Hum. Nutr.
52:253-262.
Youdim, K.A. and Joseph, J.A. (2001) A possible emerging role of phytochemicals in improving age-
related neurological dysfunctions: a multiplicity of effects. Free Radiat. Biol. Med. 30:583-589.
Yuan, Y.V., Bone, D.E and Carrinton, M.F. (2005) Antioxidant activity of dulse (Palmaria palmata)
extract evaluated in vitro. Food Chem. 91:485-494.
How to Cite
S. S. MOHANTY 3, A. K. BALIARSINGH 1* , L. SAMANTA 2 AND. ANTIOXIDANT ACTIVITY IN CALLUS CULTURES AND IN VITRO REGENERATED PLANTS OF ARTEMISIA NILAGIRICA (CLARKE) PAMP.- AN IMPORTANT MEDICINAL PLANT SPECIES. LIFE SCIENCES LEAFLETS, [S.l.], v. 60, jan. 2015. ISSN 0976-1098. Available at: <http://petsd.org/ojs/index.php/lifesciencesleaflets/article/view/230>. Date accessed: 28 june 2017.

Keywords

KEY WORDS: Artemisia nilagirica, Callus culture, In vitro regenerants, Ex vitro plants, Antioxidant activity, Free radical scavenging.