An increase in crop yield, its management and preservation are among the main
challenges standing before the human population that exceed 10 billion by the
mid of 21 st  century.  Every year, considerable agricultural losses occur due to
repeated practices of cultivation of large genetically similar populations.  Such
cultivation practices favors incidence of more insect pests (Hilder and Boulter,
1999;  Oerke  et  al.,  1994;  Smith,  1999).  To  solve  these  problems,  current
approaches  rely  on  use  of  synthetic  chemicals  like  fertilizers,  insecticides,
herbicides,  fungicides  etc.  But  this  exerts  excessively  high  pressure  on
environment  and  destabilizes  the  ecological  balance.  The  traditional  pest
control method involves the use of conventional pesticides, most of which are
non-specific and wipe out the entire community, pollutes the agro-ecosystem,
and  increases  the  cost  of  production.  The  emergence  of  gene  transfer
technology  has  solved  some  problems  regarding  overuse  of  chemical
pesticides.  The  delta  endotoxin  encoding  gene  from  Bacillus  thuringiensis,  a
gram positive soil borne bacteria transferred in crops has given little relief from
coleopterans and lepidopterans attack.  Whereas, the insects belonging to these
orders like Helicoverpa Sps. have developed resistance against Bt toxins. The
other approach takes advantage of use of plant genes encoding defense proteins
like protease inhibitors which is more appealing, simpler and safer (Dunaevsky
et.  al.,  2005).  Proteinase  inhibitors  (PIs)  are  naturally  occurring  proteins  in
living organisms and are able to inhibit & control the activity of proteases. PIs
act  on  an  active  site  of  digestive  proteolytic  enzymes  and  form  a  stable
complex  unlike  enzyme-substrate  or  enzyme-product  weak  complexes  which dissociates in short span of time (Oliva et. al., 2010). The activity of PI is to control proteolysis in cells and
its components responsible for biochemical and physiological process by blocking, altering or preventing
access to the enzyme active site. According to Broadway and Duffey (1986), the reduction in growth rate
of insects is due to the hyperproduction of proteinases to compensate for loss of activity, which in turn led
to the depletion of essential amino acids. Like other competitive PIs, cystatins form a light complex with
target proteases to cause inhibition and interfere with dietary protein digestion in herbivores (Arai et. al.,
2002). Chye et. al., (2006); Macedo et. al., (2004) and Ramos et. al., (2008) have demonstrated action of
inhibitor proteins on insect gut proteases using artificial diets and invitro inhibition assays.
KEY WORDS: Black kite, Trachea, Gross Anatomy.


Alfonso-Rubi, J., Ortego, F., Castanera, P., Carbonero, P., & Diaz, I. (2003). Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res 12, No. 1, 23-31.
Applebaum S.W. (1985). Biochemistry of digestion. In: Kerkot G.A., & Gilbert L.I., Eds. Comprehensive insect physiology; Biochemistry and Pharmacology. New York, Pergamon Press, Vol. 4, 279-311.
Arai, S., Matsumoto, I., Emori, Y. and Abe, K. (2002). Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem., 50: 6612-6617.
Atkinson, H.J., Grimwood, S., Johnston, K., & Green, J. (2004). Transgenic Res 13, No. 2, 135-142.
Authier, F., Métioui, M., Fabrega, S., Kouach, M., & Briand, G. (2002). Endosomal proteolysis of internalized insulin at the C-terminal region of the B chain by cathepsin D. J. Biol. Chem 277, No.11, 9437–9446.
Barrett, A. (1986). In Proteinase Inhibitors; Barrett, A., Salvesen, G., Eds.; Elsevier: Amsterdam, 3-22.
Barrette-Ng, I.H., Ng, K.K.S., Cherney, M.M., & Pearce, G. (2003). Structural basis of inhibition revealed by a 1:2 complex of the two-headed tomato inhibitor-II and subtilisin. Carlsberg. J. Biol. Chem 278, 24062-24071.
Benjakul, S., Visessanguan, W., & Thummaratwasik, P. (2000). Isolation and characterization of trypsin inhibitors from some Thai legume seeds. Journal of Food Biochemistry, 24:107–127.
Bernardi, R., Tedeschi, G., Ronchi, S., & Palmieri, S. (1996). Isolation and some molecular properties of a trypsin-like enzyme from larvae of European corn borer Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae). Insect Biochemistry and Molecular Biology 26, No.8-9, 883-889, ISSN 0965-1748.
Berti, P.J., & Storer, A.C. (1995). Alignment/phylogeny of the papain superfamily of Cysteine proteases. J. Mol. Bio 246, 273-283.
Bhattacharyya, A., Cherukuri, R., & Babu, C. (2009). Purification and biochemical characterization of a serine proteinase inhibitor from Derris trifoliata Lour. seeds: Insight into structural and antimalarial features. Phytochemistry 70, No.6, 703-712, ISSN 1873-3700.
Bjorklind, A., & Jornvall (1974.) H. Biochem.Biophys. Acta 370, 524-529.
Bode, W., & Huber, R. (1992). Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem 204, 433-451.
Boulter, D. (1993). Insect pest control by copying nature using genetically engineered crops. Biochem 34, 1453-1466.
Brik, A., & Wong, C.H. (2003). HIV-1 protease: mechanism and drug discovery. Org. Biomol. Chem 1, No.1, 5–14.
Broadway, R.M. and Duffey, S.S. (1986). Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol, 32: 827-833.
Brocklehurst, K., Willenbrock, F., & Salih, E. (1987). In New Comprehensive Biochemistry; Neuberger, A., Brocklehurst, K., Eds.; Elsevier: Amsterdam, New York, Vol.16, 39-158.
Campos, J., Martinez-Gallardo, N., Mendiola-Olaya, E. and Blanco-Labra, A. (1997). Purification and partial characterization of a proteinase inhibitor from tepary bean (Phaseolus acutifolius) seeds. Journal of Food Biochemistry, 21: 203–218.
Carmen, B.A., Miguel, A.M., Ester, F.S., Marsha, L.F., Jos, M.M., Enrique, Q., Francesc, A.A., Rafael, L. (1998). Potato carboxypeptidase inhibitor, a T-knot protein, is an epidermal growth factor antagonist that inhibitors tumor cell growth. J. Biol. Chem 273, 12370-12377.
Cazzulo, J. (1991). In Biochemical Protozoology; Coombs, G., North, M., Eds; Taylor & Francis: London, Chapter 17, 191-199.
Charity, J.A., Hughes, P., Anderson, M.A., Bittisnich, D.J., Whitercross, M., & Higgins, T.J.V. (2005). Functional Plant Biol 32, No.1. 35-44.
Chen, J., Hua, G., Jurat-Fuentes J.L., Abdullah, M.A., & Adang, M. (2007). Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc. Nat. Acad. Sci. USA 104, 13901-13906.
Chrispeel, M.J., & Baumgartner, B. (1978). Trypsin inhibitors in Mung bean cotyledons: Purification, characteristics, subcellular localization, and metabolism. Plant Physiol 61, 617-623.
Christeller, L.T., Farley, P.C., Ramsay, R.L., Sullivan, P.A., & Laing, W.A. (1998). Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur J Biochem 254, 160-167.
Chye, M.L., Sin, S.F., Xu, Z.F., & Yeung, E.C. (2006). Serine proteinase inhibitor proteins: exogenous and endogenous functions. Plant 42, 100-108.
Colebatch, C. M., East, P., & Cooper, P. (2001). Preliminary characterization of digestive proteases of the green mirid Creontides dilutus (Hemiptera:Miridae). Insect Biochemistry and Molecular Biology 31, No.4-5, 415-423, ISSN 0965-1748.
Cox, Michael, Nelson, David R., & Lehninger, & Albert L. (2008). Lehninger principles of biochemistry. San Francisco: W.H. Freeman. ISBN 0-7167-7108-X.
Cristofoletti, P.T., Ribeiro, A.F., & Terra, W.R. (2005). The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae: Sequence, properties, immunocytochemical localization and function. Insect Biochemistry and Molecular Biology 35, No.8, 883-901, ISSN 0965-1748.
Cuatrecasas, P. (1970). Protein Purification by Affinity Chromatography. The Journal of Biological Chemistry 245, No.12, 3059-3065, ISSN 0021-9258.
Duan, X., Li, X., Xue, Q., Abo-EI-Saad, M., Xu, D., & Wu, R. (1996). Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat. Biotechnol 14, No. 4, 494-498.
Dubey, V.K., Pande, M., Singh, B.K., & Jagannadham, M.V. (2007). Papain-like proteases: Applications of their inhibitors. African J. Biotechnol 9, 1077-1086.
Dunaevskii, Ya.E., Elpidina, E.N., Vinokurov, K.S. and Belozerskii, M.A. (2005). Mol. Biol., 39 (4): 1-7.
Dunn, B.M. (2001). Overview of pepsin-like aspartic peptidases. Curr Protoc Protein Sci Chapter 21: Unit 21.3.
Enenkel, C., & Wolf, D. (1993). J. Biol. Chem 268, 7036-7043.
Falco, M.C., & Silva, F.M.C. (2003). Expression of soybean proteinase inhibitors in transgenic sugarcane plants. Effects on natural defense against Diatraea saccharalis. Plant Phys. Biochem 41, 761-766.
Fan, S., & Wu, G. (2005). Characteristics of plant proteinase inhibitors and their applications in compating phytophagous insets. Botanical Bulletin of Academia Sinica 46, No.4, 273-292, ISSN 0006-8063.
Florkin, M. (1957). Discovery of pepsin by Theodor Schwann. (in French). Rev Med Liege 12, No.5, 139–44.
Garcia-olmedo Salcedo, F., Sanchez Monge, G., Gomez, R.L., Royo, J., & Carbonero, P. (1987). Plant proteinaceous inhibitors of proteinases and amylases. Oxford Survey Plant Molecular and Cell Biology 4, 275-334.
Gatehouse, A.M., Norton, E., Davison, G.M., Barbe, S.M., Newell, C.A., & Gatehouse, J.A. (1999). Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant protease inhibitors in vitro and in vivo. Journal of Insect Physiology 45, No.6, 545-558, ISSN 0022-1910.
Gatehouse, J.A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156, 145–169.
Gilles, A.M., Imhoff, J.M., & Keil, B. (1979). J. Biol. Chem 254, 1462-1468.
Giri, A.P., Harsulkar, A.M., Deshpande, V.V., Sainani, M.N., Gupta, V.S., & Ranjekar, P.K. (1998). Chickpea Defensive Proteinase Inhibitors can be inactivated by Podborer Gut Proteinases. Plant Physiol 116, 393-401.
Giri, A.P., Harsulkar, A.M., Maurice, S.B., Gupta, V.S., Deshpande, V.V., Ranjekar, P.K., & Franceschi, V.R. (2003). Identification of Potent Inhibitors of Helicoverpa armigera Gut Proteinases from Winged Bean Seeds. Phytochemistry 63, 523-532.
Gomes, C.E.M., Barbosa, A.E.A.D., Macedo, L.L.P., Pitanga, J.C.M., Moura, F.T., Oliveira, A.S., Moura, R.M., Queiroz, A.F.S., Macedo, F.P., Andrade, L.B.S., Vidal, M. S., & Sales, M.P. (2005). Effect of trypsin inhibitor from Crotalaria pallid seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant physiology and biochemistry 43, No.12, 1095-1102, ISSN 0981-9428.
Gomis-Ruth, F. X., Grams, F., Yiallouros, I., Nar, H., Kusthardt, U., Zwilling, R., Bode, W., & Stocker, W. (1994). Crystal structures, spectroscopic features, and catalytic properties of cobalt (II), copper (II), nickel (II), and mercury (II) derivatives of the zinc endopeptidase astacin. A correlation of structure and proteolytic activity. Journal of Biological Chemistry 269, No. 25, 17111–17117, ISSN 1083-351X.
Grudkowska, M., & Zagdanska, B. (2004). Multifunctional role of plant Cysteine proteinases. Acta Biochem. Polonica 51, 609-624.
Haq, S.K., Atif, S.M., & Khan, R.H. (2004). Protein Proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch. Biochem. Biophys 431, 145-159.
Hedstrom, L. (2002). Serine protease mechanism and specificity. Chem. Rev 102, 4501-4523.
Heinemann, U., Pal, G., Hilgenfeld, R., & Saenger, W. (1982). J. Mol. Biol.161, 591-606.
Hideaki, N. and Guy, S.S. (2001). Finding, Purification and Characterization of natural protease inhibitors. In B. Robert, and S. B. Judith (Eds): Proteolytic enzymes, Second Edition: A Practical Approach, Oxford University Press, New York.
Hilder, V.A., & Boulter, D. (1999). Genetic engineering of crop plants for insect resitance - a critical review. Crop Protection, 18, 177-191.
Hilder, V.A., Gatehouse, A.M.R., Sherman, S.C., Barker, R.F., Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature 300, 160-163.
Hiwasa, T., Sakiyama, S., Yokoyama, S., Ha, J.M., Noguchi, S., Bando, Y., Kominami, E., & Katunuma, N. (1988). FEBS Lett 233, 367-370.
Howe, G.A. (2004). Jasmonates as signals in the wound response. J Plant Growth Regul 23, 223–237.
Huang, C., Ma, W.Y., Ryan, C.A., & Dong, Z. (1997). Proteinase inhibitors I and II from potatoes specifically block UV-induced activator protein-1 activation through a pathway that is independent of extracellular signal-regulated kinases, c-jun Nterminal kinases, and P38 kinase. Proc. Natl. Acad. Sci. USA 94, 11957-11962.
Imai, T., Miyazaki, H., Hirose, S., Hori, H., Hayashi, T., Kageyama, R., Ohkubo, H., Nakanishi, S., & Murakami, K. (1983). Cloning and sequence analysis of cDNA for human renin precursor. Proc. Natl. Acad. Sci. U.S.A. 80, No. 24, 7405–7409.
Inaoka, T., Bilbe, G., Ishibashi, O., Tezuka, K., Kumegawa, M., Kokubo, T. (1995). Biochem. Biophys. Res. Comm 206, 89-96.
International Union of Biochemistry. (1992). Enzyme nomenclature. Academic Press Inc., Orlando, Fla.
Joanitti, G.A., Freitas, S.M., & Silva, L.P. (2006). Proteinaceous protease inhibitors: structural features and multiple functional faces. Curr. Enzyme inhibition 2, 199-217.
Johnston, N., Dettmar, P.W. and Lively, M.O. (2006). Effect of pepsin on laryngeal stress protein (Sep70, Sep53, and Hsp70) response: role in laryngopharyngeal reflux disease. Ann Otol Rhinol Laryngol 115:47–58.
Joshi, B., Sainani, M., Bastawad, E.K., Gupta, V.S., & Ranjekar, P.K. (1998): Cysteine protease inhibitor from pearl millet: A new class of antifungal protein. Biochem Biophys Res Commun 246, 382-387.
Jui, P., Kavita , Z., and Vasanti, V.D. (2002). Differential stabilities of alkaline protease inhibitors from actinomycetes: Effect of various additives on thermo stability. Biores Technol., 84, 165-169.
Kansal, R., Gupta, R.N., Koundal, K.R., Kuhar, K. and Gupta, V.K. (2008). Purification, characterization and evaluation of insecticidal potential of trypsin inhibitor from mungbean (Vigna radiata L. Wilczek) seeds. Acta Physiol. Plant. 30:761-768.
Kamphuis, I., Drenth, J., Baker, E. (1985). J. Mol. Biol 182, 317-329.
Kemp, G., Webster, A., Russell, W. (1991). In Essays in Biochemistry; Tipton, K., Ed., Portland Press: London 27, 1-16.
Kennedy, A.R. (1998). The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent. Am. J.Clin. Nutr 68, 1406S-1412S.
Kessler, A., & Baldwin, I.T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53, 299–328.
Kirschke, H., & Barret, A. (1987). In Lysosomes: Their Roles in Protein Breakdown; Glaumann, Ballard, Ed.; Academic Press: London, 193-238.
Konarev, A.V., Lovegrove, A., & Shewry, P.R. (2008). Serine proteinase inhibitors in seeds of Cycas siamensis and other gymnosperms. Phytochemistry 69, No.13, 2482-2489, ISSN 0031-9422.
Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., & Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37, 370–378.
Kuhelj, R., Dolinar, M., Pungercar, J., & Turk, V. (1995). Eur. J. Biochem 229, 533-539.
Kunimitsu, D., & Yasunobu, K. (1970). Methods Enzymol 19, 244-252.
Lam, W., Coast, G. M., & Rayne, R. C. (1999). Isolation and characterization of two chymotrypsin from the midgut of Lacusta migratoria. Insect Biochemistry and Molecular Biology 29, No.7, 653-660, ISSN 0965-1748.
Lam, W., Coast, G. M., & Rayne, R. C. (2000). Characterization of multiple trypsins from the midgut of Lacusta migratoria. Insect Biochemistry and Molecular Biology 30, No.1, 85-94, ISSN 0965-1748.
Lawrence, P.L., & Koundal, K.R. (2002). Plant protease inhibitors in control of phytophagous insects. Electronic Journal of Biotechnology 5, No.1, 93-109, ISSN 0717-3458.
Lee Angela, Gulnik Sergei, & Erickson John (1998). Conformational switching in an aspartic proteinase. Nat.Struct.Mol.Biol 5, 866–871.
Lemos, F. J. A., Campos, F. A. P., Silva, C. P., & Xavier-Filho, J. (1990). Proteinases and amylases of larval midgut of Zabrotes subfasciatus reared on cowpea (Vigna unguiculata) seeds. Entomologia Experimentalis et Applicata 56, No.3, 219-227, ISSN 0013-8703.
Leung, D., Abbenante, G., & Fairlie, D. P. (2000). Protease Inhibitors: Current Status and Future Prospects. Journal of Medicinal Chemistry 43, No.3, 305-341, ISSN 1520-4804.
Liener, I., & Friedenson, B. (1970). Methods Enzymol. 19, 261-273.
Ligia, R.M. Gracas, M.F.M.D., Cristina, E.C., Marcos, H.T., Novello, J.C. and Sergio, M. (2003). A Trypsin inhibitor from Pletophorum dubium seeds active against pest protease and its effect on the survival of Anagasta kuehniella. Biochem. Biophys Acta., 1621, 170-182.
Lilley, C.J., Urwin, P.E., Johnston, K.A., & Atkinson, H.J. (2004). Plant Biotechol. J 2, No. 1, 3-12.
Lowe, G. (1976). Tetrahedron 32, 291-302.
Luaces, A., & Barrett, A. (1988). Biochem J 250, 903-909.
Macedo, M. L. R., Filho, E. B. S. D., Freire, M. G. M., Oliva, M. L. V., Sumikawa, J. T., Toyama, M. H., & Marangoni, S. (2011). A trypsin inhibitor from Sapindus saponaria L. seeds: purification, characterization, and activity towards pest insect digestive enzyme. The protein journal 30, No.1, 9–19, ISSN 1875-835.
Macedo, M.R.L., Sa, C.M., Freire, M.G.M., & Parra, J.R.P. (2004). A Kunitz-type inhibitor of coleopteran proteases, isolated from Adenanthera pavonina L. seeds and its effect on Callosobruchus maculates. J. Agric. Food Chem 52, 2533-2540.
Madala, P.K., Tyndall, J.D., Nall, T., & Fairlie D.P. (2010). Update 1 of Proteases universally recognizes beta strands in their active sites. Chem Rev 110, No.6, 1–31.
Maheswaran, G., Pridmore, L., Franz, P., & Anderson, M.A. (2007). A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Reports 26, 773-782.
Maity Joydev and Patra Bidhan, C. (2003). Isolation and characterization of trypsin inhibitor from the water fern, Azolla pinnata R.Br. Journal of Food Biochemistry, 27 (4): 281–294.
Mandal, S., Kundu, P., Roy, B., & Mandal, R. K. (2002). Precursor of the inactive 2S seed storage protein from the Indian mustard Brassica juncea is a novel trypsin inhibitor. Charaterization, post-translational processing studies, and transgenic expression to develop insect-resistant plants. The Journal of biological chemistry 277, No.40, 37161-37168, ISSN 1083-351X.
Marciniszyn, J., Hartsuck, J.A., & Tang, J. (1977). Pepstatin inhibition mechanism. Adv. Exp. Med. Biol 95, 199–210.
McDonald, J., & Barrett, A. (1986). Mammalian Proteases; Academic Press: London, Vol. 2.
Mitchell, R., Chaiken, I., & Smith, E. (1970). J. Biol. Chem 245, 3485-3492.
Mohan, S., Ma P.W.K., Pechan, T., Bassford, E.R., Williams,W.P., & Luthe, D.S. (2006). Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J Insect Physiol 52, 21–28.
Murachi, T. (1970). Methods Enzymol 19, 273-285.
Murachi, T. (1976). Methods Enzymol 45, 475-485.
Murdock, L, L., Brookhart, G., Dunn, P.E., Foard, D.E., & Kelley, S. (1987). Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology-B 87, 783-787.
Murugiswamy, B., & Madaiah, M. (1989). Trypsin Inhibitors of Winged Bean Tubers (Psophocarpus Tetragonolobus): Purification and Properties. Journal of Food Biochemistry 13, 253-269.
Musil, D., Zucic, D., Turk, D., Engh, R., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., & Bode, W. (1991). EMBO J. 10, 2321-2330.
Neale, K., & Alderete, J. (1990). Infect. Immun 58, 157-162.
Neurath, H. (1984). Evolution of proteolytic enzymes. Science 224, 350-357.
North, M., Mottram, J., & Coombs, G. (1990). Parasitol. Today 6, 270-275.
Northrop, J.H. (1929). Crystalline pepsin. Science 69, 580.
Novillo, C., Castanero, P., & Ortego, F. (1997). Inhibition of digestive trypsin-like proteases from larvae of several Lepidopteran species by the diagnostic cysteine protease inhibitor E-64. Insect Biochemistry and Molecular Biology 27, No.3, 247-254, ISSN 0965-1748.
Oerke, E.C., Dehne, H.W., Schonbeck, F., & Weber, A. (1994). Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier, Amsterdam.
Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T., Ota, M. (1994). Can. J. Microbio 40, 930-936.
Oliva, M.L.V., Silva, M.C.C., Sallai, R.C., Brito, M.V. and Sampaio M.U. (2010). A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie, 92 (11): 1667–1673.
Outchkourov, N.S., de Kogel, W.J., Schuurman-de Bruin, A., Abrahamson, M., & Jongsma, M.A. (2004). Specific cysteine protease inhibitors act as deterrents of western flower thrips, Frankliniella occidentalis (Pergande), in treansgenic potato. Plant Biotechnol. J 2, 439-448.
Pal, G., & Sinha, N. (1980). Arch. Biochem. Biophys 202, 321-329.
Pavloff, N., Potempa, J., Pike, R., Prochazka, V., Kiefer, M., Travis, J., & Barr, P. (1995). J. Biol. Chem 270, 1007-1010.
Pearce, G., Sy, L., Russel, C., Ryan, C.A., & Hass, M. (1982). Arch. Biochem. Biophys 213, 456-462.
Pearl, L. (1987). Sequence specificity of retroviral proteases. Nature 328, No.6130, 351-354, ISSN 1476-4687.
Pechan, T., Cohen, A., Williams, W.P., & Luthe, D.S. (2002). Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci USA 99, 13319–13323.
Petsko Gregory & Ringe Dagmar (2004). Protein Structure and Function. ISBN 978-1-4051-1922-1.
Pitot, H., & Gohda, E. (1987). Methods Enzymol 142, 279-289.
Potempa, J., Dubin, A., Korzus, G., & Travis, J. (1988). J. Biol. Chem 263, 2664-2667.
Potempa, J., Pike, R., & Travis, J. (1995). Infect. Immun 63, 1176-1182.
Prasad, E.R., Dutta-Gupta, A., & Padmasree, K. (2010). Purification and Characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo). Phytochemistry 71, 363-372.
Prushoff, W., Lin, T.-S., Manchini, W., Otto, M., Siegel, S., & Lee, J. (1984). In Targets for the Design of Antiviral Agents; De Clerq, E., Walker, R., Eds.; Plenum Press: New York, 1-27.
Ramesh Bhau, S., & Subrahmanyam, B. (2010). Biopotency of serine proteinase inhibitors fron Acacia senegal seeds on digestive proteinases, larval growth and development of Helicoverpa armigera (Hubner). Pesticide Biochemistry and Physiology 98, 349-358.
Ramos, V.S., Silva, G.S., Freire, M.G.M., Parra, J.R.P. and Macedo, M.L.R. (2008). Purification and characterization of a trypsin inhibitor from Plathymenia foliolosa seeds. J. Agric. Food Chem., 10: 11348-11355.
Rawlings, N.D., & Barrett, A.J. (1993). Evolutionary families of peptidases. Biochem. J 290, 205-218.
Rawlings, N.D., & Barret, A.J. (1994). Families of serine peptidases. Methods in Enzymology 244, 19-61.
Rawlings, N.D, & Barrett, A.J. (1995). Evolutionary families of metallopeptidases. Meth. Enzymol 248, 183-228.
Rawlings, N.D., Tolle, D.P., & Barrett, A.J. (2004). Evolutionary families of peptidase inhibitors. Biochem J 378, 705-716.
Reeck, G.R., Kramer, K.J., Baker, J.E., Kanost, M.R., Fabrick, J.A., & Behnke, C.A. (1997). Proteinase inhibitors and resistance of transgenic plants to insect. In: Crozzi N and Koziel M, eds. Advances in insect control: the role of transgenic plants. London, Taylor and Francis, p. 157-183.
Rickauer, M., Fournier, J. and Esquerre-Tugaye, M.T. (1989). Induction of proteinase inhibitors in tobacco cell suspension culture by elidtors of Phytophthora parasitica var nicotianae. Plant Physiol., 90: 1065-1070.
Ritonja, A., Popovic, T., Kotnik, M., Machleidt, W., & Turk, V. (1988). FEBS Lett 228, 341-345.
Rosenberg, R.C., Root, C.A., Bernstein, P.K., & Gray, H.B. (1975). Spectral studies of copper(II) carboxypeptidase A and related model complexes, Journal of the American Chemical Society 97, No. 8, 2092–2096, ISSN 1520-5126.
Ryan, C.A. (1981). In The Biochemistry of Plants (ed. Marcus, A.), Academic Press, New Yark Vol. 6, 351-370.
Ryan, C.A. (1990). BioEssays 10, 20-23.
Ryan, C.A. (1990). Protease inhibitor in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology 28, No.1, 425-449, ISSN 00664286.
Sane, V.A., Nath, P., Aminuddin, & Sane, P.V. (1997). Development of insect resistant. Transgenic plants using plant genes expression of cowpea trypsin inhibitor in transgenic tobacco plants. Curr. Sci 72, 741-747.
Schilmiller, A.L., & Howe, G.A. (2005). Systemic signaling in the wound response. Curr Opin Plant Biol 8, 369-377.
Schumaker, T.T.S., Cristofoletti, P.T., & Terra, W.R. (1993). Properties and Compartmenta- lization of digestive carbohydrases and proteases in Scaptotrigona bipunctata (Apidae: Meliponinae) larvae. Apidologie 24, No.1, 3-17, ISSN 1297-9678.
Scott, C.J., & Taggart, C.C. (2010). Biologic protease inhibitors as novel therapeutic agents. Biochimie 92, No.11, 1681-1688, ISSN 1638-6183.
Seals, D.F., & Courtneidge, S.A. (2003). The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes & Development 17, 7–30, ISSN 0890-9369.
Shahidi-Noghabi, S., Van Damme, E.J., & Smagghe, G. (2008). Carbohydrate-binding activity of the type-2 ribosome-inactivating protein SNA-I from elderberry (Sambucus nigra) is a determining factor for its insecticidal activity. Phytochemistry 69, 2972–2978.
Sharma, A., Padwal-Desai, S., & Ninjoor, V. (1989). Biochem. Biophys.,Res. Commun 159, 464-471.
Shewry, P.R. (2003). Tuber storage proteins. Annals of Botany 91, No.7, 755-769, ISSN 1095-8290.
Shoshan-Barmatz, V., Weil, S., Meyer, H., Varsanyi, M., Heilmeyer, L. (1994). J. Membrane Biol 142, 281-288.
Silva, C.B.L.F., Alcazar, A.A., Macedo, L.L.P., Oliveira, A.S., Macedo, F.P., Abreu, L.R.D., Santos, E.A., & Sales, M.P. (2006). Digestive enzymes during development of Ceratitis capitata (Díptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology 36, No.7, 561-569, ISSN 0965-1748.
Silva, C.P., Terra, W.R, & Lima, R.M. (2001). Differences in midgut serine proteinases from larvae of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Archives of Insect Biochemistry and Physiology 47, No.1, 18-28, ISSN 0739-4462.
Silva, C.P. & Xavier-Filho, J. (1991). Comparasion between the levels of aspartic and cysteine proteinases of the larval midguts of Callosobruchus maculatus (F.) and Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae). Comparative Biochemistry and Physiology - Biochemistry & Molecular Biology 99, No.3, 529-533, ISSN 1096-4959.
Simoes, I., & Faro, C. (2004). Structure and function of plant aspartic proteinases. European journal of biochemistry 271, No.11, 2067-2075, ISSN 1432-1033.
Smith, C.M. (1999). Plant Resistance to Insects. In Rechcigl, J.A.R.N. (ed.), Biological and Biotechnological Control of Insects. Lewis Publishers, Boca Raton, p. 171 - 205.
Speranskaya, A.S., Krinitsina, A.A., Revina, T.A., Gerasimova, N.G., Keruchenko, Y.S., Shevelev, A.B., & Valueva, T.A. (2006). Heterologous Exppression, Purification, and Properties of a Potato Protein Inhibitor of Serine Proteinases. Biochemistry 71, No.11, 1176-1182.
Stocker, W., & Bode, W. (1995). Structural Features of a Superfamily of Zinc-Endopeptidases: The Metzincins. Curr Opin Struct Biol 5, No.3, 383-390, ISSN 0959-440X.
Suguna, K., Padlan, E.A., Smith, C.W., Carlson, W.D., & Davies, D.R. (1987). Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc. Natl. Acad. Sci. U.S.A. 84, No. 20, 7009–13.
Suzuki, K., Saido, T., & Hirai, S. (1992). Ann. N. Y. Acad. Sci.; Banner, C., Nixon, R., Eds.; Vol. 674, 218-228.
Tai, J., Kortt, A., Liu, T.Y., & Elliott, S. (1976). J. Biol. Chem 251, 1955-1959.
Takio, K., Towatari, T., Katunuma, N., Teller, D., & Titani, K. (1983). Proc.Natl. Acad. Sci. U.S.A. 80, 3666-3670.
Tamhane, V.A., Chougule, N.P., Giri, A.P., Dixit, A.R., Sainani, M.N., & Gupta, V.S. (2005). In vivo and in vitro effects of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochemica et Biophysica Acta 1722, 156-167.
Taniguchi, T., Mizuochi, T., Towatari, T., Katunuma, N., & Kobata,A. (1985). J. Biochem. 97, 973-976.
Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta 1477, No.1-2, 98-111, ISSN 0006-3002.
Turnsek, T., Kregar, I., & Lebez, D. (1975). Biochim. Biophys. Acta 403, 514-520.
Urwin, P.E., Levesley, A., Mc Pherson, M.J., & Atkinson, H.J. (2004). Mol. Breeding 6, No. 3, 257-264.
Ussuf, K.K., Laxmi, N.H. and Mitra, R. (2001). Proteinase inhibitors: plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Curr. Sci. 80: 847-853.
Velasco, G., Ferrando, A., Puente, X., Sanchez, L., & Lopez-Otın, C. (1994). J. Biol. Chem. 269, 27136-27142.
Vernekar, J.V., Tanksale, A.M.,Ghatge, M.S., & Deshpande, V.V. (2001). Novel bifunctional alkaline protease inhibitor: Protease inhibitor activity as the biochemical basis of antifyngal activity. Biophys. Res. Commun 285, 1018-1024.
Vila, L., Quilis, J., Meynard, D., Breitler, J.C., Marfa, V., Murillo, I., Vassal, J.M., Messeguer, J., Guiderdoni, E., & San, Segundo B. (2005). Plant Biotechnol J 3, No.2, 187-202.
Walling, L.L. (2000). The myriad plant responses to herbivores. J Plant Growth Regul 19, 195–216.
Walsh, T.A. and Twitchell, W.P. (1991). Two kunitz-type proteinase inhibitors from potato tubers. Plant Physiol., 97 (1):15-8.
Wolf, M., Clark-Lewis, I., Buri, C., Langen, H., Lis, M., & Mazzucchelli, L. (2003). Cathepsin D specifically cleaves the chemokines macrophage inflammatory protein-1 alpha, macrophage inflammatory protein-1 beta, and SLC that are expressed in human breast cancer. Am. J. Pathol. 162, No. 4, 1183–90.
Yang, L., Fang, Z., Dicke, M., Van Loon, J.J., Jongsma, M.A. (2009). The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochem. Mol. Biol 39, 55-61.
Zhen, E. Y., Brittain, I. J., Laska, D. A., Mitchell, P. G., Sumer, E.U., Karsdal, M.A., & Duffin, K.L. (2008). Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis and Rheumatism 58, No.8, 2420-2431, ISSN 1529-0131.
Zinkler, D., & Polzer, M. (1992). Identification and characterization of digestive proteinases from the firebrat Thermobia domestica. Comparative Biochemistry and Physiology - Biochemistry & Molecular Biology 103, No. 3, 669-673, ISSN 03050491.
How to Cite


Black kite, Trachea, Gross Anatomy.