KARRIKIN: A SEED GERMINATION STIMULANT

  • SANJEEV KUMAR MAURYA, ALOK SRIVASTAVA AND SANJAY KUMAR GARG* SANJEEV KUMAR MAURYA, ALOK SRIVASTAVA AND SANJAY KUMAR GARG* PLANT BIOCHEMISTRY AND PHYSIOLOGY LAB., DEPARTMENT OF PLANT SCIENCE, M. J. P. ROHILKHAND UNIVERSITY, BAREILLY – 243006. Corresponding author’s e-mail: gargskplantscience@gmail.com
Keywords: KEY WORDS, Karrikins, Plant Growth Regulators, Butenolide, Dormancy, Seedling Growth.

Abstract

ABSTRACT:
Karrikins are a chemically defined group of plant growth regulators of the butenolide class found in smoke of burning plant material. Karrikins are effective in breaking the dormancy of seeds and also control the seedling growth of the plant.  F-box gene MAX2 and an α/β hydrolase fold protein KAI2 or DAD2 play important role in the signaling pathway for signal transduction of karrikins.  The discovery of karrikins set up an interesting new nexus among fire ecology, plant evolution and molecular plant physiology.

References

REFERENCES:
Baskin, C.C. and Baskin, J.M. 1998. Types of seed dormancy in Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination. San Diego: Academic 27–48.
Binder, B.M., Walker, J.M., Gagne, J.M., Emborg, T.J., Hemmann, G., Bleecker, A.B. and Vierstra, R.D. 2007. The Arabidopsis EIN3 binding FBox proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19 (2): 509–523.
Borger, E.D.G., Ghisalberti, E.L. and Stick, R.V. 2007. Synthesis of the germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one and analogous compounds from carbohydrates. Eur. J. Org. Chem. 23: 2925-2934.
Catav, S.S., Bekar, I., Ates, B.S., Ergan, G., Oymak, F., Ulker, E.D. and Tavsanoglu 2012. Germination response of five eastern Mediterranean woody species to smoke solutions derived from various plants. Turkish Journal of Botany 36: 480-487.
Chiwocha, S.D.S., Dixon K.W., Flematti, G.R., Ghisalberti, E.L., Merritt, D.J., Nelson, D.C., Riseborough, J.A.M., Smith, S.M. and Stevens, J.C. 2009. Karrikins: a new family of plant growth regulators in smoke. Plant Science 177: 252-256.
Daws, M.I., Davies, J., Pritchard, H.W., Brown, N.A.C. and Van Staden, J. 2007. Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regulation 51: 73-82.
Delaux, P.M., Xie, X., Timme, R.E., Puech-Pages, V., Dunand, C., Lecompte, E., Delwiche, C.F., Yoneyama, K., Becard, G. and Delmas, N.S. 2012. Origin of strigolactones in the green lineage. New Phytol. 195 (4): 857–871.
Dharmasiri, N., Dharmasiri, S., and Estelle, M. 2005a. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.
Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jurgens, G. and Estelle, M. 2005b. Plant development is regulated by a family of auxin receptor F Box proteins. Dev. Cell 9 (1): 109–119.
Dixon, K.W., and Roche, S. 1995. The role of combustion products (smoke) in stimulating ex-situ and in-situ germination of Western Australian plants. Proc. Int. Plant Prop. Soc. 45: 53-56.
Dixon, K.W., Merritt, D.J., Flematti, G.R. and Ghisalberti, E.L. 2009. Karrikinolide—a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic. 813: 155–70.
Drewes, F.E., Smith, M.T. and Van Staden, J. 1995. The effect of a plant derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 16: 205–209.
Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. 2004a. A compound from smoke that promotes seed germination. Science 305: 977.
Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. 2005b. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. Tetrahedron Letters. 46: 5719–5721.
Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. 2004b. Molecular weight of a germination-enhancing compound in smoke. Plant and Soil 263 (1–2):1–4.
Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., Trengove, R.D., Skelton, B.W. and White, A.H. 2005a. Structural analysis of a potent seed germination stimulant. Aust. J. Chem. 58: 505–506.
Flematti, G.R., Goddard-Borger, E.D., Merritt, D.J., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. 2007. Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. J. Agric. Food Chem. 55: 2189–2194.
Flematti, G.R., Scaffidi, A., Goddard-Borger, E.D., Heath, C.H., Nelson, D.C., Commander, L.E., Stick, R.V., Dixon, K.W., Smith, S.M. and Ghisalberti, E.L. 2010. Structure-activity relationship of karrikin germination stimulants. J. Agric. Food Chem. 58 (15): 8612–8617.
Gardner, M.J., Dalling, K.J., Light, M.E., Jager, A.K. and Van Staden, J. 2001. Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellins metabolism? S. Afr. Bot. 67: 636-640.
Guo, H. and Ecker, J.R. 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667–677.
Halford, B. 2010. Smoke Signals. Chemical and Engineering News 88(15): 37–38.
Hamiaux, C., Drummond, R.S., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R. D. and Snowden, K.C. 2012. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, Strigolactone. Curr. Biol. 22 (21): 2032–2036.
Jain, N., Stirk, W.A. and Van Staden, J. 2008. Cytokinin-and auxin-like activity of a butenolide isolated from plant-derived smoke. S. Afr. J. Bot. 74: 327–331.
Jain, N. and Van Staden, J. 2006. A smoke-derived butenolide improves early growth of tomato seedlings. Plant Growth Regul. 50: 139–148.
Janssen, B.J. and Snowden, K.C. 2012. Strigolactone and karrikin signal perception: receptors, enzymes, or both?. Frontiers in Plant Science Plant Evolution and Development 3: 1-13.
Kepinski, S. and Leyser, O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451.
Kulkarni, M.G., Ascough, G.D. and Van Staden, J. 2008. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. Hort. Technology 18: 449–454.
Kulkarni, M.G., Sparg, S.G., Light, M.E. and Van Staden, J. 2006. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J. Agron. Crop Sci. 192: 395–398.
Light, M.E., Burger, B.V. and Van Staden, J. 2005. Formation of a Seed Germination Promoter from Carbohydrates and Amino Acids. Journal of Agricultural and Food Chemistry 53 (15): 5936–5942.
Light, M.E., Daws, M.I. and Van Staden, J. 2009. Smoke-derived butenolide: towards understanding its biological effects. South African Journal of Botany 75: 1–7.
Long, R.L., Williams, K., Griffiths, E.M., Flematti, G.R., Merritt, D.J., Stevens, J.C., Turner, S.R., Powles, S.B. and Dixon, K.W. 2010. Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid. Ann. Bot. 105: 1063–1070.
Merritt, D.J., Dixon, K.W., Flematti, G.R., Commander, L.E. and Turner, S.R. 2005. Recent findings on the activity of butenolide—a compound isolated from smoke that promotes seed germination. In: Abstracts of the Eighth International Workshop on Seeds: Germinating New Ideas. Brisbane, Australia, p 27.
Nagase, R., Katayama, M., Mura, H., Matsuo, N. and Tanabe, Y. 2008. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-ones utilizing direct and regioselective Ti-crossed aldol addition. Tetrahedron Letters 49: 4509–4512.
Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology 63: 107-130.
Nelson, D.C., Riseborough, J.A., Flematti, G.R., Stevens, J., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. 2009. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology 149(2): 863-873.
Nelson, D.C., Scaffidi, A., Dun, E.A., Waters, M.T., Flematti, G.R., Dixon, K.W., Beveridge, C.A., Ghisalberti, E.L. and Smith, S.M. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 108 (21): 8897–8902.
Pechony, O. and Shindell, D.T. 2010. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107: 19167–19170.
Pierce, S.M., Esler, K. and Cowling, R.M. 1995. Smoke induced germination of succulents (Mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia 102: 520–522.
Roche, S., Dixon, K.W. and Pate, J.S. 1997. Seed ageing and smoke: partner cues in the amelioration of seed dormancy in selected Australian native species. Aust. J. Bot. 45: 783–815.
Scaffidi, A., Flematti, G.R., Nelson, D.C., Dixon, K.W., Smith, S.M. and Ghisalberti, E.L. 2012. Insight into the molecular mechanism of karrikins and strigolactones. Bioorg. Med. Chem. Lett. 22: 3743–3746.
Smedley, J.B.M., Appleby, M.W., Pyrke, M. and Battaglia, M. 1997. Soil seed bank for optimising the germination of native species. Parks and Wildlife Service, Department of Environment and Land Management, Tasmania.
Sparg, S.G., Kulkarni, M.G. and Van Staden, J. 2006. Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop. Sci. 46: 1336–1340.
Stevens, J.C., Merritt, D.J., Flematti, G.R., Ghisalberti, E.L. and Dixon, K.W. 2007. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 298: 113–124.
Sun, K., Chen, Y., Wagerle, T., Linnstaedt, D., Currie, M., Chmura, P., Song, Y. and Xu, M. 2008. Synthesis of butenolides as germination stimulants. Tetrahedron Lett. 49: 2922–2925.
Van Staden, J., Jager, A.K., Light, M.E. and Burger, B.V. 2004. Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany 70: 654–659.
Van Staden, J., Sparg, S.G., Kulkarni, M.G. and Light, M.E. 2006. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 98: 98–105.
Walsh, T.A., Neal, R., Merlo, A.O., Honma, M., Hicks, G.R., Wolff, K., Matsumura, W. and Davies, J.P. 2006. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyaceticn acid or indole-3-acetic acid in Arabidopsis. Plant Physiol. 142 (2): 542–552.
Warburton, L.M.E. 1999. A smoke induced alteration of the sub-testa cuticle in seeds of the post-fire recruiter, Emmenanthe penduliflora Benth (Hydrophyllaceae). J. Exp. Bot. 49: 1317–1327.
Waters, M.T., Brewer, P.B., Bussell, J.D., Smith, S.M., and Beveridge, C.A. 2012c. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in control of plant development by strigolactones. Plant Physiol. 159: 1073–1085.
Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. 2012a. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139: 1285–1295.
Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. 2012b. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development139 (7): 1285–1295.
Xie, D.X., Feys, B.F., James, S., Nietorostro, M., and Turner, J.G. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094.
Xu, G., Ma, H., Nei, M., and Kong, H. 2009. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. U.S.A. 106: 835–840.
Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D. and Xie, D. 2002. The SCF (COI1) ubiquitinligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14 (8): 1919–1935.